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Abstract

We present a new numerical method for calculating an evolving 2-D Hele-Shaw in-

terface when surface tension effects are neglected. In the case where the flow is directed

from the less viscous fluid into the more viscous fluid, the motion of the interface is

ill-posed; small deviations in the initial condition will produce significant changes in

the ensuing motion. This situation is disastrous for numerical computation, as small

round-off errors can quickly lead to large inaccuracies in the computed solution. Our

method of computation is most easily formulated using a conformal map from the fluid

domain into a unit disk. The method relies on analytically continuing the initial data

and equations of motion into the region exterior to the disk, where the evolution prob-

lem becomes well-posed. The equations are then numerically solved in the extended

domain. The presence of singularities in the conformal map outside of the disk intro-

duces specific structures along the fluid interface. Our method can explicitly track the

location of isolated pole and branch point singularities, allowing us to draw connec-

tions between the development of interfacial patterns and the motion of singularities

as they approach the unit disk. In particular, we are able to relate physical features

such as finger shape, side-branch formation, and competition between fingers to the

nature and location of the singularities. The usefulness of this method in studying the

formation of topological singularities (self-intersections of the interface) is also pointed

out.
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Contract No. NAS1-19480 while lhe author was in residence at the Institute for Computer Applications
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1 Introduction

The displacement of a viscous fluid by a less viscous fluid in a Hele-Shaw cell has been

the subject of intense investigation over the last decade, mainly due to newly discov-

ered matllematical analogies with dendritic crystal growth, directional solidification,

and electro-chemical growth. The original motivation behind the pioneering work of

Saffman &" Taylor [36] was the analogy to displacement in porous medium. Reviews

by Saffman [38], Bensimon, Kadanoff, Liang, Shraiman, & Tang [.5], and Homsy [16]

summarize the state of affairs as of the mid-eighties, while_some of the the more recent

developments are reviewed by Pelce [31], Kessler, Koplik, & Levine [22], nowison [21],

and Tanveer [42] from a range of different perspectives.

In this paper, we shall limit our investigations to channel flow, although our numer-

ical method is quite general, and can be applied to other geometries. The advantage

of this restriction is that our description can be specific. Moreover, the phenomena

displayed in channel flow have been studied extensively, and are representative of other

Hele-Shaw flows.

A steadily advancing fiat interface ill a channel is unstable to perturbations when

driven by the less viscous fluid. The perturbations grow into fingers, but the subse-

quent behavior depends on the relative strength of capillary effects, measured by the

dimensionless number B = ab2/(12ttVa2). Here a is the surface tension coefficient, b

is the gap width of the cell, a is the channel width, V is the speed of displacement well

in front of the interface, and it is the viscosity of the more viscous fluid (the viscosity of

the less viscous fluid is assumed negligible). Numerical computations by Tryggvasan

& Aref [45, 46], OeGregoria and Schwartz [9], Bensimon [6], and Meiburg and Homsy

[27] show competition between fingers resulting in the emergence of a single steady

finger, provided B is greater than about 0.0004 ¢ (but not greater than B_ = 0.025

otherwise the interface is stabilized by capillary effects). For still smaller B, DeGre-

goria and Schwartz [9, 10] and Bensimon [6] find that the finger spontaneously splits;

this can be induced for higher values of B by introducing perturbations at the tip,

tThere is a range in B, depending on the level of noise in an experiment or numerical calculation,

in which a transition occurs between steadily moving fingers and continua] unsteady motion. A typical

range is 0.0005 > B > 0.0002. We have taken 0.0004 as a representative value.



even with small amplitude. Experiments also reveal tile emergence of tip splitting and

side-branching instabilities (Park & Homsy [28], Tabeling, Zocchi, & Libchaber [41]).

Bensimon [6] provides numerical evidence supporting heuristic arguments that the size

of the perturbation triggering instability decreases with B. The computations of Dai

and Shelley [8] (in the circular geometry) also show great sensitivity to the level of

numerical precision when the surface tension coefficient is small. For small enough B,

even noise during experiments can be large enough to set off a pattern of continual

tip-splitting and finger competition ( Maxworthy [26], Arneodo, Couder, Grasseau,

IIakim & Rabaud [2]). Indeed, when capillary effects are very small, it appears that

the pattern is fractal (Maxworthy [26], Kopf-SiU & Homsy [23], hrneodo et. al. [2]).

Detailed understanding of this unsteady behavior is limited. In particular, tlle

numerical work has not produced a clear understanding of the asymptotic trends as

B _ 0. Unfortunately, the inclusion of surface tension in the usual mathematical

model makes theoretical studies very difficult. Instead a large body of knowledge has

been developed for the initial-value problem when B = 0. For example, Gustaffson

[13, 14] has rigorously proved the existence of a solution for finite time starting with

analytic initial data. Earlier, Galin [11] and Polubarinova-Kochina [32] considered

the mathematically identical problem of the Darcy model for ground water flow and

devised analytical techniques to obtain exact solutions for a class of initial conditions.

These were apparently well-known in the Russian literature (see Hohlov [15] and How-

ison [21]). Exact solutions due to Saffman [37], Howison [18, 19, 20] and Shraiman

& Bensimon [39] can be seen as applications of these techniques though these results

were obtained without knowledge of the earlier Russian work. Howison [21] summa-

rizes the relation between the different techniques. Within the class of known exact

solutions, there are finger patterns that exist for all times and exhibit behavior similar

to experimental observation (Patterson [30]). Further, there are solutions (Shraiman

_" Bensimon [39]) that exist only for a finite time and culminate in a zero angled cusp

at the interface. Howison [19] uses the class of known exact solutions to point out that

the initial-value problem is ill-posed; it is possible to choose an initial condition for

which the solution exists for all times, whereas there is a neighboring initial condition

for which the interface develops a cusp after a finite time.



In essence, these theoretical results use a conformal map z(q',t) which maps the

interior of a unit semi-circle in the _ plane to the physical flow domain of a channel

(see Figure 1). The location of the free surface at a time t is given by z(q',t) =

x(O, t) + iy(O, t) for q" = e i° on the arc of the semi-circle. The equation for the evolution

of (x(O,t),y(O,t)) results from the usual application of the kinematic and dynamic

conditions at the interface. Tile symmetry in the problem allows us to reflect the

solution about the real axis. In essence, we include a mirror image of the channel

so that the interface may be considered periodic. Thus, the conformal map must be

analytic inside the unit disk, aside from a logarithmic singularity at ¢ = 0, but it

may have singularities and zeros outside it. These can move towards the boundary

of the unit disk, I(I = 1. In particular, zeros may reach the boundary in finite time,

causing a cusp to form on the interface. The origin of ill-posedness, then, is that small

perturbations can introduce a zero or a singularity in z( near the unit disk, which

subsequently moves towards it and reaches it quickly. Following the work of Richardson

[35] and Lacey [25], Tanveer [43] showed that all singularities, no matter what type,

will move towards the unit disk, while preserving their type. Indeed, we surmise

that round-off error in traditional numerical calculations introduces singularities at

some distance from ](I = 1; these subsequently approach the unit disk and lead to

the random pattern of tip-splitting, side-branching and finger competition seen in

computations for increasingly small B.

Ideally, one would like to understand the Hele-Shaw dynamics for a small non-zero

B perturbatively, thus exploiting the simpler B = 0 case. There are several hurdles

in accomplishing this. One is the ill-posedness of tile B = 0 problem in the physical

domain ]q'l -< 1. Another is the fact tilat information in the B = 0 problem is not

complete. We do not have an exact solution to the general initial value problem, nor

do we have a detailed understanding of the motion of singularities. Furthermore, it

is not known how to numerically compute solutions to the B = 0 problem effectively.

Conventional numerical simulation in the physical flow domain l(] -_ 1 suffers from

uncontrolled growth of round-off errors (see Aitchison & Howison [1]). Employing a

filtering procedure such as that used by Krasny [2,1] in tile Kelvin-Helmholtz instability

{another ill-posed problem) allows simulations in the physical domain to proceed. Still,

as is demonstrated by Dai & Shelley [8], the choice of parameterization has a strong



effect on the accuracy of the computation. Moreover, a good parameterization is

very dependent upon the initial data. For data with a general collection of zeros and

singularities, reliable long time calculations in the physical domain become extremely

difficult.

[n a recent development, Tanveer [43] has been able to demonstrate that analyti-

cally extending the initial value problem for z((,', t) into the region exterior to the unit

disk leads to a well-posed evolution problem. It is important to note that when the

initial interface location is known only to a finite precision, initial data z(_, 0) in the

extended region I(,'1 > 1 cannot be obtained in a weU-posed manner. In effect, the

ill-posedness of the dynamics is transfered to the ill-posedness of extending the data

from I_l = 1 to I¢'1> 1. Nevertheless, when datais specified in I_'1 > 1 (say, with z((,',0)

given in closed form) the interface evolves without sensitivity to initial conditions.

Tanveer's observation addresses the first hurdle mentioned above. In this paper,

we address the second hurdle by presenting a numerical method which efficiently solves

the initial value problem in the expanded domain when B = 0. Our work extends the

method, developed by Baker &, Tanveer [4], to include the trajectories of singularities

of the form

z_,,_A(t)(_-_s(t)) _, o¢0,1,2,... (1)

explicitly in the complex plane _" when B = 0. Thus we are able to assess directly

tile impact of the close approach of pole and branch point singularities to I_1 = 1.

We do find that singularities induce tip-splitting and side-branching, and that the

relative strength of the singularities control finger competition. Moreover, our studies

draw connections between the parameters specifying the singularities and the result-

ing physical behavior. In other words, for given initial data we are able to predict

the outcome from knowledge about the initial singularities in J¢'l > 1. Within this

framework, comparisons with experimently observed features are possible by studying

a random ensemble of initial conditions in I(,'1> l, subject to the constraint that they

describe the same initial interface, up to some 'experimental" error.

Beside the explicit treatment of singularities, there is another crucial ingredient in

our method. An analytic function, such as a conformal map, is determined completely

by its values on a closed curve. Instead of advancing the conformal map on I(I = 1 in



time asin standardboundaryintegralmethods,our method advances the conformal

map on a much larger circle. The interpolation of the conformal map to I(I = 1 is

then a well-posed operation. In essence, knowledge of the conformal map on a much

larger circle corresponds to knowledge of the conformal map on ICI -- 1 to a higher

degree of precision. In contrast, extrapolation of the conformal map to a larger circle

is an ill-posed operation, all operation not to be attempted numerically. Since our

method uses the discrete Fourier transform to evaluate Laurent series, our results are

spectrally accurate and can be performed in O(N log N) operations. Furthermore,

explicit treatment of the nearest singularities helps avoid point crowding typical of

conformal maps.

There are several limitations to our method. First, there is the matter of the initial

data. We require that all singularities of z( in the extended domain be isolated branch

points or poles. This rules out some types of initial data; for example, structures

such as natural boundaries or essential singularities are not allowed in the extended

domain. Nevertheless, the kinds of data we do allow produce a wide range of interfacial

features such as tip-splitting, side-branching and finger competition which are similar

to experimental observations.

The second limitation is that, at present, our method is restricted to the zero

surface tension problem. Given this, it is important to discuss the relationship between

B = 0 solutions and those for B > 0. The well-posed formulation of the B = 0

problem allows the effects of small surface tension to be addressed perturbatively. It

turns out that, at the initial time, surface tension is a regular perturbation except in

the neighborhood of zeros and certain singularities of z¢. Tanveer [43] has examined

the effect of small surface tension on isolated singularities in the initial data of the

form (1). I Capillary effects on singularities with o _< -4/3 cause only a regular

perturbation. Their powers are unchanged but their speed and strengths A(t) are

modified slightly by terms proportional to B. Singularities with -4/3 < o < -1/2

are immediately transformed into a localized cluster of -4/3 branch point singularities,

though the t)ehavior ( 1 ) is still relevant in an outer asymptotic sense. Thus, for times

much less than 1/B the interface behaves as though it is unaffected by surface tension,

tour use of _ for the power corresponds to Tanveer's [43] choice of -IL
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provided these singularities do not come within a distance O(B_¥Z) from [([ = 1 and

zeros in z c are far from the unit disk. § For initial conditions with zeros present, recent

evidence (Siegel, Tanveer, & Dai [40]) shows that small surface tension effects can

significantly perturb the interface in O(1) time. This can happen even when the zeros

do not impinge on the unit disk. The surface tension effects occur in predictable ways

when a localized cluster of -4/3 singularities created out of an initial zero (termed

daughter singularity by Tanveer [43]) come within an O(B 1/3) neighborhood of the

unit disk. However, there are initial conditions for which daughter singularity effects

do not occur in O(1) time. Our computations determine the leading order interfacial

shapes in such cases. Perhaps more importantly, the method presented here provides

a means to determine if and when the zero surface tension evolution of the interface

deviates from the small surface tension evolution.

In the next section, we describe the equations upon which our method is based.

The explicit treatment of singularities is discussed in Section 3. Then we describe the

numerical method in Section 4. In Section 5, we present tests of our method, and

some typical results. Our conclusions are discussed in Section 6.

2 The Equations of Motion

In this section we present the equations which govern interfacial flow in a Hele-Shaw

cell without the details of their derivation. We will follow closely the formulation ill

Tanveer [,13]. Our discussion will be limited to flow in the channel geometry. For the

equivalent formulation in a radial geometry, see Tanveer [43].

Consider a Hele-Shaw cell of infinite length and finite width a in which air of

negligible viscosity is pushing a viscous, incompressible liquid. Introduce the conformal

map z((, t) which takes the interior of a unit semi-circle in the _"plane into the viscous

fluid region of the channel, which lies in the z plane. Tile circular arc I(I = 1 is mapped

to the interface, and the diameter is mapped to the channel walls. A schematic of the

mapping is provided in Figure 1. Note that we set the width a = 2.

fWhen singularities are initially O( 1 ) distance from the unit disk, they can move to within O( B _ )

in O(In B -1 ) time.



The functional form of the conformal map is given by

z(_,t)=--21n (+i+f((_,t) (2)
7r

where f is analytic in an open set which contains the unit semi-circle. Tile analyticity

of f on the circular arc guarantees the smoothness of the interface. We require that

Im{f} = 0 (3)

on the real diameter of the semi-circle to satisfy the condition that z maps this diameter

to the channel walls. In addition, we assume that z( 7_ 0 in a region containing the

unit semi-circle. The Schwartz reflection principle then implies that f is analytic and

¢ 0 for I¢'1-<1.

The fluid velocity u, averaged across the plate gap, satisfies Darcy's law

_5 2

u = 1-_Vp

where it is the viscosity, b is tile plate gap, and p is the pressure (here considered

as a function of x and y). Thus (-b_/121t)p provides a velocity potential ¢. Incom-

pressibility implies the existence of a stream function _/,. We can therefore introduce

a complex potential function W(z, t) = ¢(z, t) + i_(z, t) which is an analytic function

of z in the fluid region of the channel. Considered as a function of (, this potential is

decomposed as

H;(C,',t) = --21n(+i+a3((,t) (4)
7r

where w, is assumed to be analytic in unit semi-circle, implying (via the Schwartz

reflection principle) its analyticity for I(,'1< 1. In (4) the velocity at infinity is assumed

to be 1; together with a = 2, this choice makes our variables effectively dimensionless.

The relation

Im{_} = 0 (5)

is required to hold on tile real diameter of S, and is the mathematical statement of

the condition that there is no flow through the walls.

The interfacial conditions will determine the evolution of the map z((,', t). The kine-

matic condition states that the normal component of the fluid velocity is continuous



acrosstile interfaceandimpliesthat on ](I = 1

I = 0 (6)

Details of the derivation of this equation are available in Saffman [37] and Richardson

[35]. In the absence of capillary effects, the dynamic condition requires continuity of

pressure across the interface. When the viscosity of the less viscous fluid is negligible,

this condition gives

lte{ } = 0 (7)

on [q'l = 1. We note in passing that a more complete description of Hele-Shaw flow

introduces more complicated interfacial conditions due to a thin film left behind by an

advancing interface. However, several numerical (Park & Homsy [29], Reinelt [33, 34])

and analytic (Tanveer [44]) studies have shown that many salient features of interfaeial

motion described by the more detailed model are captured by tile simpler interfacial

conditions (6-7).

From (5) and (7) it is immediately apparent that w = 0 for all ( in tile complex

plane. Thus, (6) becolnes

-  lz 12 (s)

In order to extend (8) into the region ](,'1> 1, we first provide an analytic extension

of the conjugate of an analytic function evaluated on [ q"[= 1. Let

r(¢) = a.¢"
n_O

be an analytic function in 1¢] -< 1. Then

oo

_/'((,') = _ a,,(" (9)
rt----O

is analytic in [(_[< 1, where the overbar denotes complex conjugation. For functions

that are not necessarily analytic at the origin, though analytic on a segment of t(,'l = l,

we can generafize the above definition of/_(() through the relation /_((,') = /_(_).

['(1/_) is then the analytic extension of/_ from [ q"I= 1. It follows that

1
Re{r(¢)} = _ [F(() +/_(1/¢)] (10)



for ( = e i°. In addition, [F(£)[ 2

Re <7

on ( = C iO.

= F(()fi(1/() on ( = ei°. Thus (8) can be written as

2

_z<((, t)_<(1/(, t)
(11)

Tile continuation of equation (11) into tile domain I<1< 1 can now be obtained ill

a straight forward manner by employing the Poisson Integral Formula. In particular,

we use a variant of the standard formula which gives the value of an analytic %nction

in the domain I(I < 1 in terms of its real part evaluated on the unit circle. Application

of the formula to the %net.ion zt/(C,z¢) yields (with appropriate choice of imaginary

constant)

for I([ < 1, where

zt _ i((,t) (12)

1 _¢ 1 (' + ( d('l((,t)- rc2i ,l=l z((f',t)5((1/(',t)('-( i' (13)

Equation (12) can be analytically continued into the domain [([ > 1 by deforming

the contour in the usual way, producing an additional term from the residue of the

pole at. (. Consequently, we have

zt = (z<I(C,,t)
2_

lr_<(1/(, t)
(14)

for I(I > 1. Note that l((,,t) defines different analytic functions in lil< 1 and I(I > 1.

A useful alternative form for (14) may be obtained by' employing (10) to write (8)

as

zt (it( 1/(, t) 2(
- (15)

(z< 5_(1/(,t) z:<(1/()

Since E't(1/() and E<(1/() are analytic in I ( I> 1, this equation provides us with a

second expression for I((, t),

when I(I > 1.

(,'Et( 1/(,', t) ( 16
l((,t) - - _<(1/(,t)

In order to make the structure of (12) and (14) more apparent, define

q_ = (/((,t) (17

-2(
q2- 5((1/()" (18



Then (12)becomes

for t(I < 1,and (14)becomes

zt - ql z_ = 0. (19)

zt - qlz( = q2. (20)

for It,] > 1. These equations, corresponding to equations (3.1) and (3.3) of Tanveer

[43], have the advantage over (8) of allowing studies of the presence and influence of

singularities of z; in I¢1 > 1. Furthermore, they lead to the development of a new

numerical procedure for calculating interfaciat motion in a well-posed fashion for a

restricted class of initial conditions.

Since l((,t) and 5¢(1/_) are analytic in I_'l > 1, so too are ql((,t) and q2((,t),

except at infinity, where qt has a simple pole, i.e.. grows as (,'. Since (20) has a

form analogous to a first order hyperbolic system in the complex plane, (although in

reality it is a nonlinear integro-differential equation with coefficients ql and q2 that

depend nonlocally oil z), tile analyticity of ql and q2 has important consequences oll

the presence and motion of singularities of z. For the convenience of the reader, we

provide a summary of what is known (Richardson [35], Lacey [25], Tanveer [43]):

1. There is no spontaneous generation of singularities in the finite complex plane.

Furthermore, the form of a singularity which is present initially in the region

I(_1> 1 is invariant with time. Singularities which are present initially at infinity

do not move to a finite ff location.

2. We define a "characteristic" in the _"plane by

did(t) - --ql (_c(t), t). (21)
dt

Let (c(t) = R_(t) e ion(t), then

R-:= = -Re C (t) (22)

Tanveer [43] has shown that the right hand side of (22) is less than zero when

I(cl > 1. (!onsequently, "information" outside of the unit disc flows inward

toward I(,[ = 1.

10



3. This is particularlytruefor isolatedsingularitiesoftheform (1). Thelocationof

thesesingularitiessatisfies(21), i.e. they movewith speed-ql((=(t), t), so they

move towards the unit circle. Incidentally, the singularity in z which is present

initially at ( = 0 does not move in time, since the characteristic speed at ( = 0

(given by ql(0, t))is zero.

4. Singularities with a > -1/2 reach tile unit circle in finite time. Singularities

with a _< -1/2 come indefinitely close to, but never reach the boundary I(,'[ = 1.

Several properties of zeros in z( are also relevant. For example, there is no spon-

taneous generation of zeros of z_ in the finite complex plane, although zeros which

are present initially at infinity can move to a finite _"location. When a zero impinges

on I_] = 1, it produces a zero-angled cusp in the shape of the interface; see Howison

[19.20] and Shraiman & Bensimon [39] for exact solutions where this happens. There

is no physically sensible way of continuing the solution in time. Unlike singularities,

the zeros of z_ do not move generally with the characteristic speed -ql and it is hard

to predict if a given zero will hit the unit circle or stall at a finite distance from ]_l = 1.

In this paper, our interest will be focussed on initial conditions containing only

isolated singularities of form (1) with a < -1/2, so they do not reach ](,'] = 1 in finite

time. We shall also pick cases where zeros in z_ do not reach ]_'1 = 1 during the time

of our computations. For these cases, the inclusion of surface tension acts in a regular

perturbative manner, so the results indicate what can be expected in the limit of weak

surface tension.

3 Explicit Treatment of Singularities

Baker & Tanveer [4] use (20) to solve directly for z((,', t) on a circle in the ( plane of

radius R(t), assuming that this circle does not contain a zero of zi or a singularity of

f(C, t) = z - i + (2/_r) In (. The advantage of computing the evolution of f((,', t ) on the

boundary I_[ = R(t) is that during the process no singularities in z( will be introduced

in I_1 < R(t). Of course, singularities in z( may be present outside I(,'[ = R(t), but

as long as R(t) shrinks fast enough, singularities will not intrude into ](,'[ _< R(t): the

presence of zeros must be checked separately. Furthermore, a function which is analytic

11



in I(I < R(t) can be determined throughout this region from its values on I(I = R(t)

through evaluation of its Taylor series - this step is well-posed as demonstrated in the

next section. Thus, the interface, z(Iql = l, t), can be recovered from the solution on

I_1 = R(t).

Unfortunately, R(t) must shrink faster than the approach of any singularity to

[_t --- 1. Consequently, the computation may terminate (when R = l) before any

interesting structures have developed on tile interface. For initial conditions containing

isolated singularities of form ( 1 ), this obstacle may be removed by explicit treatment of

the singularities. In this section, we derive equations in which singularities in I(I > l

are treated explicitly; they are ill a sense 'subtracted' from the data and evolved

separately. In the next section, we show how the resulting equations can be solved in

an efficient and well-posed fashion.

For initial data containing singularities of form (1) in I(] > 1, the solution may be

written in the form,

z(i,t) = EJ(_,t) 1 iSt) ] + EJ(_,t) 1 _j_t)
'= j=Jl +1

+ F,J(_,t) 1- _j(t)] J +G'(q',t)- _lnq" (23)

where I(_jl > l; oj are real constants (excluding 0, 1,2,...); and EJ((_j(0),0) # 0.

llere _j(t) for j = 1,..., 31 mark the location of singularities on the real line, and (j(t)

for j = J1 + l ..... .1 indicate singularities with non-zero imaginary part. In order to

satisfy (3), the amplitudes EJ((,,I) for j = 1...... ]l must be real. The amplitudes

E_((,,t) for j = J1 + 1..... J are, in general, complex. Conjugate singularities _j(t)

with amplitudes E3(q',t) are included to satisfy condition (3). The branch cut is

chosen so that the argument of (1 - (/(j) lies between _r and -_-: we have chosen

this form to simplify the numerical evaluation of the interfacial location when ICI = 1.

In the region ]C] > 1, there can be other singularities at _/ which are not explicitly

represented. However, it is assumed that the (,'3 are the nearest singularities so that,

given i, the inequality [(_;I > R(t) > I_jl holds for all j = 1..... .l. The functions

E3(q',t) and G((,t) are analytic in the annulus 1 _< I(,'[ < R(t). If all singularities are

explicitly represented, these functions are analytic in the entire region exterior to the

12



unit disk. Unfortunately,it is possiblefor E j and G to have singularities in I(I < I

which cancel in (23) so that z + (2/r)ln(," is analytic in ](] _< 1.

In order for (23) to be a solution to (20), (,'j, E J, and G must satisfy

d_
-- = -ql((j(t),t) (24)
dt

- ql EJi =(o3+1)E J (j ql(('t) -
ql((,j(t),t)

EJt
C (_(t)

2
G t - ql G ¢ = zql + q2.

7rq

ql((j,t)'_
j

(26)

In the case of initial data with logarithmic singularities (poles in z() the solution

has a modified form,

z((,t) = __EJ(_,t) In 1 + EJ((,t)ln 1
J=Jl +1

+ EJ(_,t)ln 1- _At) (27)

where

dt - -q_((J(t)'t) (28)

E3t - ql E'I_ = 0 (29)

Gt-ql G¢=q2+ y_E "i ql(('t)-ql((J(t)'l) ql((j'l)_
j:, C(t; j (30)

Of course, it is possible to have a combination of the two forms, (23) and (27).

Our numerical method is based on (24-26) or (28-30): in the next section, we

describe how the solution may be updated in a well-posed fashion.

4 Numerical Method

Our numerical treatment is a combination of tracking the positions of the singular-

ities by solving (24) (or (28)) and of advancing EJ((,t) and G((,t) in time by the

method of lines. Despite appearances, it is not necessary to update EJ((,t), and

G((,t) throughout the computational domain, an annulus 1 _< I_l <- R(t). Knowl-

edge of these functions on the circles I(,'1= 1 and I/I = R(t) is sufficient to (letermine

them everywhere inside the annulus. Nevertheless, we must use a special procedure

to update EJ(q ", t) and (;((,', t)in a numerically stable way.
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Weintroducea decompositionfor a function9(£) which is analytic in tile annulus

by writing it as the sum of a function 9+(£) which is analytic inside a circle ]£] = R

and a function 9-(£) which is analytic outside the circle I(I = 1. The decomposition is

made unique by requiring g+(0) = 0. By considering the Laurent expansion for g(£),

we not, e that

= 9ki k (31)

,X,

9+(_) = _gk(, "k (32)
k=!

where the Taylor series for g+(() will have a radius of convergence R+ > R, and the

Laurent series for g_(() will converge outside I_1 = R_ < 1. We call the function

g+ inner analytic and the function g_ outer analytic.

An important feature of an inner analytic function is that its values inside a closed

curve can be determined from the values on the curve in a well-posed fashion. To see

this, consider an inner analytic function g+(q') evaluated on a circle of radius R. Let

(, = Re i°, then
o¢

9+(0) = OktCk 
k=l

In practice, the coefficients 0#R k are obtained by the discrete Fourier Transform. Since

the sum converges, these coefficients must decay with increasing k. There will be a

value, k_ say, where the coefficients reach the round-off levels of a computer. If suffi-

cient resolution is used with the discrete Fourier Transform, then the coefficients with

k > k_ will contain round-off levels and not their actual values. This has important

conse(tuences when we wish to evaluate 9+ on a different circle ( = re i°. Then

8+(0) = E 9kRkeikO'
k=l

so each coefficient OkR k is multiplied by rk/R k prior to using the discrete Fourier

Transform again to evaluate the SUln. If r > R, then round-off errors in {tkR k for k > k_

will be significantly amplified, even to the point that all accuracy in 8+(( = r(i°) will

be lost. However, if r <_ R, round-off errors are decreased. For an outer analytic

function the situation is reversed: evaluation on r _> R (here we will take R = 1) is

numerically stable, while on r < R it is not. The exception to our statements is when

14



there is a known,finite numberof termsin (31)or (32)with amplitudeswell above

round-offlevels.Then the relativeerrorsin the evaluationof g+ or g_ on any circle

relnains small when we use only the finite number of terms.

4.1 Basic Algorithm

We decompose both EJ((,t) and G((,t) into inner and outer analytic parts and use

the method of lines to update E__, G+ on lil= R, and EL, G_ on ICI = 1. We

obtain evolution equations for these quantities by applying the projection operators,

"H+f = f+ and 'H_f = f_. Thus, from (25) and (26), we have

E j = 7/_ {R_((,/)} (33)
--t

Before giving the results for the other components, we note that ql and q2 have very

simple decompositions. From (16) and (17):

ql((,', t) ---- (ql(/') + ql- (36)

= ((_l(t) contains only one term, whereas (18) shows that q2 is outer analyticwhere ql +

only,

qe(i,t) = q2_ • (37)

Tile form of the decompositions (36) and (37) is very beneficial in our design of a

well-posed algorithm. For example, we use the facts that the product of E j with ql
-(

and the product of E _' with [q_(()- q_((k)]/((- (k)result in only outer analytic parts

to simplify the _+ projection of (25):

= {R2((,t)}

+ + 1) ( _ (J Q(t) E (38)

The resulting equation for G+ simplifies to

(;+_}G +, = "H+ q_

when we use the facts that -2ql/(_'q'), q2 and G are outer analytic.

(39)
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Thefollowingpropertiescall beeasilydeducedfrom(34-35)and (38-39):

1. Theevolutionof E_. does not depend explicitly oil E__. As a result, if EJ((,,O)

satisfies E_((,',0) = 0, then EJ+((,,t) = 0 for all t. The same result holds for

(;+(c,, t).

2. If EJ+((,, 0) contains a finite number of modes in (32) with highest wavenumber

k = M, then no modes with wavenumber k > M will be generated in E__((,t).

The same result holds for G+.

Similar results hold for the decomposition of E j and G in (29) and (30) for loga-

rithmic singularities.

To apply the method of lines to (34-35) and (38-39), we assume that we know E__

and (;+ at N evenly spaced points on the circle r = R(t), and E j and G_ at. N evenly

spaced points on the unit circle. Actually, it is not necessary to use the same number

of points on both circles, but we make that assumption for ease of presentation. First,

we describe how to evaluate the right hand side of (34) and (35) on the unit circle. For

the moment we assume that ql and q2 are known there; we describe their computation

in detail in the next sub-section.

We compute the coefficients ckR k in the representation

N/2

E{(¢ = R i°,t) = ckRkcik°
k=l

by use of the discrete Fourier Transform. The coefficients ck are obtained by a division

by R k and then used to evaluate E__ and E___ on the unit circle by use of the discrete

Fourier Transform, where

N/2

: kck¢k-1 . (40)
k=l

The function E3_. is also determined on I_l = 1 by using the discrete fourier Transform.

Then we have all the information needed to evaluate R1 in (34) at N evenly spaced

points on the unit circle. To execute the projection 'H_, we use the discrete Fourier

Transform to calculate the coefficients in the representation

N/2

÷k(t)¢k.
k=-N/2

16



Then weset to zeroall the coefficientswith k _> 1. The result is an outer analytic

function, which is the forcing term in (34). Balance of the Fourier coefficients of like

modes on the left and right hand sides of (34) then yields a set of equations

= ÷k(t)

for the Fourier coefficients /_]_(t) (k <_ 0) of Eft. In an equivalent procedure, we may

use G'+, known on r = R(t), to determine G+_, and use G_, known on the unit circle,

to get G_¢. Then the forcing term for (35) is computed by executing the projection

7-/_ as described at)ove.

From our discussion oll the importance of "characteristics" defined by (21), we

anticipate that E_. and G+ must be evaluated on a circle with a radius that is collapsing

at. rate,

( }- max Re ql(_',t) (41)
R dt I_l=n(t) £ "

Then, information outside the circle I(I = R(t) will not cross the boundary into the

annulus, 1 _< I(I -< R(t). We include an advection term that accounts for the change

in E__ due to the change in R(/): thus (38) becomes

A similar term is needed in the equation (39) for G+.

We will describe in detail in the next sub-section how ql and q2 may be evaluated

on ](_I = R(t). The quantities E )+., G+< can be evaluated by spectral techniques as

described in (40). The expression contained within brackets on the right hand side

of (42) can then be evaluated. The Fourier coefficients of the right hand side of (42)

are obtained using the discrete Fourier Transform, and the projection 7-/+ is done by

zeroing all modes with k _< 0. Equating like Fourier modes then leads to a set of

evolution equations for Ei(/), the Fourier coefficients of E__, for k > 0. The same

procedure may be used on the equation for G+.

Any suitable ODE Solver may be applied to the evolution equations for ('3 EJ and

(;k. For the results used in this paper, we use the standard fourth-order Runge-Kutta

method with fixed step-size.

Since z(_, t)+ (2/Tr)ln q"has a Taylor series expansion about _ = 0, all the negative

terms in the Laurent expansion for G(q',t) must cancel all the negative terms in the
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Laurentexpansionsof the sumsin (23). This will beonly approximatelytrue in the

discretecalculation,so it canbeusedasa checkfor numericalaccuracy.Although it

is not necessaryto computeG_((, t) to update the interface, we have done so in order

to employ this check.

For certain initial conditious, our algorithm is greatly simplified. For example,

when E__ has only a few terms in its Taylor series expansion, then it is possible to

_j
write down by hand the evolution equations for the Fourier coefficients, E k, since the

products

( tlR_ E_ and ql((,t)-ql((j,t)

will contribute only a few terms due to the simple decomposition (36) for ql. In

particular, if E__, E j, G+, and G_ are time-dependent constants in (, then only E_

need be computed.

4.2 Computation of ql and q2

Here we provide details of the computation of ql and q2 in Ill _> 1 by using (13), (17),

and (18). First, we calculate E__(C,t), E__<((, t), and E_<(f,t) on ICI = x by means of

tile discrete Fourier Transform as described in the previous subsection. These values

are used to compute 1/z¢(() = Poo(()/D(() on I_1 = 1 where

D(() = -- 7r(_ j=,_-_PJ°(()(0i + I) (J -

- P0j(() ((_j + 1) _
J----J1 + i

+ G_(()P00(q) (43)

and

p-(<)=II II
t=l t= Jl-I-I

iCr i_s

This form for 1/zi((,') is obtained by differentiating (23) with respect to (, then fac-

toring out l/P00(() and taking the reciprocal. Vv'e have found it necessary to compute

1/zd( ) using this expression to obtain accurate results for ql when singularities are

very close to 1(I = 1. The function 1/_<(1/() can be comt)uted on I(I = 1 by taking

the conjugate of l/zc((). Consequently, the function q: can be computed on the unit

circle using (18).



Tile functionql is computed as follows. We write

oo

_rzd()_<(1/( ) = do + _--_(dk( k + dk(-k)
k=l

(44)

on _" = e iO. We determine approximations to the N coefficients {dl,...,dN/2},

{d,,...,dN/2} by means of the discrete Fourier Transform. Upon substitution of

(44) into (13) and computation of the residues, one finds that

N/2 ]
ql = --(," do + 2 _ dk (-k (4,5)

k=l

Note that dj is real (i.e., dj = dr ) for the channel geometry, as a consequence of z being

real along the real axis of (. Tile functions ql and q2 can be analytically continued out

to ttle circle [([ = R(t) by tile ideas expressed in (40). Similarly, ql can be evaluated

at the location (j(t) of tile singularities.

4.3 Computations for Extremely Close Singularities

Many of the interesting interfacial features revealed by our calculations occur when

singularities approach tile unit circle within a distance much less than machine preci-

sion. To track these singularities reliably when they are that close to the unit circle

we must express their location as

(_ = ( l + _j )e i6

The time evolution of the quantities Oj(t) and Aj(I) = 1/t_j are then determined

numerically using the equations

dA.i _ A2jRe{q,((j,t)e-i°J}
dt

dOj 1

- hn{ql((,j,t)e-i°J}.
dt 1 + 6j

We use Aj instead of _j so that singularities can be allowed to come extremely close

without the worry of them jumping inside the unit circle due to time-stepping errors.

The computation of ql(C,j, t) is more delicate when (j is extremely close to the unit

circle, since the quantities
1 1

[/,'_ I (l+_6j) k
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in (45)will beapproximatedas1,leadingto inaccuraciesin thecomputation. In order

to obtain a better value for 1/(,'_ we write

i 6j
- I - i + A(6j)

1 + tSj 1 + 6j

and Cmnl)ute fk(t_3), defined by

(1 + 6j) k
= 1 + fk(tSj (46)

using the recursion

fk-l(_j) - _j
A(6j) =

l+t_j

The substitution of (46)into (4.5) then yields ql((_3,t) = ql(ei°_,t)+ 6ql(_,t), where

_ql(_j,t) = -e iOJ (_jdo
+ 2_ & [6(I+ :k)+/de -_°' •

k---I

(47)

Then,

where we have used

Re{ql((j,t)e i6 } = 7rlz((eiO; ,t)12Re --el6 , (48)

Re{ql(Gl)} _ 2

when }(I = 1, which follows from {13)and (17). By using (48), we avoid any problems

with round-off errors. On the other hand, Im{qi/(3} is computed with qi directly

determined from (47}.

5 Numerical Results

where 1

'_Vo use a known exact, solution due to Saffman [37] to help validate our method:

2 In (,'+ 1 In 1
z(_,t) = i + d(t) - -_ -_ aV(t )

< a(O) < oc. The functions d(t) and a(t) are determined by

a(t) = [1 + KlC-2_rt] 1/4

and

1 [1+d(/)= l¢o+2t+_-ln h'_e -2_t]

(49)
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whereK0 and Ka are constants which are determined by tile initial conditions. From

(49), it is clear that z( has poles at (1,2 = ±a(t), but no zeros. The form of tile initial

data (27) used in our numerical method is made to correspond to (49) by setting

El((,0) = E2((,0) = 1/_" and G((,0) = i + d(0). We pick d(0) so that the initial

profile has zero mean height. The functions EJ((, t) and G((, t) are constants in ( for

this problem, and therefore only a single Fourier mode (namely the constant mode)

is necessary to specify them. Nevertheless, we use 512 modes in our computation in

order to check the numerical stability of our algorithm for computing EJ((,t) and

G((,t).

The results of our numerical method for a(0) = 2.0 are shown in Figure 2. We use

a time step of At = 0.005. At t = 3, the calculation gives the positions of the poles as

(1,2 = +1.0000000244216, whereas the exact positions are (1,2 = +1.0000000244215.

Although the difference is less than 10 -12, the exact and the numerically computed

profiles differ by only a little less than l0 -6. However, we find no growth of round-off

errors in the modes comprising ES((, t) and G((, t). In this example we set R(0) =

2,000, and stop the calculation at t = 3 when R is nearly 1. Because there are no

zeros in z c we call take R(0) much larger and run for even longer times.

There are no known exact solutions for channel geometry when branch point sin-

gularities are located in the region [([ > 1 (although exact solutions with branch point

singularities have been found for sector geometry; see Tu [47]). We replace the two

pole singularities in z c of (49) by two branch point singularities of equal power and

amplitude, and locate them symmetricaUy on the real axis of (. Our choice is mo-

tivated by tile desire to understand the role of the power of a singularity in zi on

the shape of the interface. Thus we select initial data corresponding to (23) with

J1 = 2, ol = a2, and (1(0) = -(2(0). In Figure 3, Ol = -4/5, and in Figure 4,

c_1 = -4/3. Initial values for the singularity positions (j(0) and amplitudes EJ((,0)

are determined through experimentation; those that lead to solutions in which the

interface becomes well-deformed before zeros impinge on the unit disc are selected

for presentation. In this manner, the initial singularity positions and amplitudes

are chosen as (1(0) = -(2(0) = 1.2, El((,0) = E2(_,0) = 1.94 for Figure 3, and

(l(0) = -(2(0) = 3.3, El((,0) = E2(q',0) = -2.2 for Figure 4. In these and all

subsequent computations we set G((,0) = i + c, where c is a real constant selected to
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produce an initial profile with zero mean height. Recall that for constant initial data

such as this, only negative Fourier modes in E j and G are generated. Consequently,

we only need to solve equations (34) and (35). The positive Fourier modes are set to

zero after each time step in the calculation. We use 512 points on the unit circle in

the ( plane, and a time step of At = 0.0005.

We check our numerical results by comparing them with the results obtained when

none of the singularities outside the unit disk are represented explicitly. To perform

the latter calculation, we use the code to solve for G+((_, t) + G'0(t) on a circle of radius

R(t) that is closer than the smallest I_j(t)l. Consequently, we shrink the radius R(t)

as described in section 4. While the calculation must be stopped before long because

R _< 1, the output provides a useful check on the present results for some period of

time. In addition, we decrease the time step and increase the number of modes until

there are no detectable differences in the solution within plotting accuracy.

Unlike the previous example, we cannot be sure that zeros do not approach the

unit disk. So we monitor the presence of zeros by computing the integral

1 _ Z((d_ (50)N, - 21ri I=1 z(

which, according to the argument principle, equals the number of zeroes minus the

number of poles of z( inside the unit disk. As long as there are no zeros of z( in

Iq'l -< 1, this integral will equal -1, due to the simple pole of z¢ at _ = 0. For

the results presented in Figures 3 and 4, the value of Nz remains within 1% of -1

throughout the length of the computation. Note further that if a zero in z( is located

near the unit disk, the close presence of a pole singularity in the integrand of (50)

causes a loss of accuracy in its numerical evaluation. Thus we feel confident that no

zeros are very near to the unit disk up until the times of the final profiles in Figures

3,4, and 5.

The contrast between Figures 3 and 4 is quite striking. The higher value of

e_ = -4/5 in Figure 3 correspond to a singularity of weaker effect in that the bulge of

fluid at the base of the finger is less rounded, causing a finger that is more pointed.

The lower value of (_ = -4/3 in Figure 4 produces a more spherically shaped bulge of

fluid, causing a thinner neck at the base of the finger. In general, our experiments with

various powers (_ show that for powers c_ > -1, more pointed fingers are produced
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from tile lesspronouncedbulgesof fluid at their bases.Forc) < -1, the fingers have

parallel sides, but their bases have thinner necks as a consequence of more spherically

rounded bulges of fluid there.

A representative Fourier spectrum from the calculation with c_ = -4/3 is pre-

sented in Figure 5. There is no sign of spurious growth in the large [k[ modes or any

other indications of numerical instability, although it is necessary to evaluate ql using

expression (43) in order to avoid such growth. The rise in the tail of the spectrum

with respect to time is due to singularities ill the functions E -_, G, ql, and q2 at po-

sitions ( = 1/_'i and C = 1/(_2 inside the unit disc. Since z - (2/rr)ln_ is analytic in

]_'[ < 1, the singularities in E j and G must cancel out in the expression for z((,'), (23).

Nevertheless, these singularities do affect the numerical computation of the quantities

E ¢, G, ql, or q2. Since tile singularities move toward _ = 4-1 from inside the unit

disc as _'1,2 -_ +1 from the outside, a large number of Fourier modes are required

to obtain accurate representations for these quantities when the singularities are very

close to tlle unit circle. Another consequence of the close approach of the singularities

to the unit circle is the need for much smaller time steps to maintain accuracy. This

is also true when zeros in z( get close to the unit disk. In general, it is either the

close approach of singularities in E -/ and G or zeros in z( to ](,'[ = 1 that force us to

terminate our calculations.

If we ignore the loss of accuracy, we can continue the calculations shown in Figures

3 and 4 a little fllrther in time. We see evidence that zeros are impinging on the unit

disk. For the calculations associated with Figure 3, a zero is approaching [_[ = 1 at

a point corresponding to the tip of the finger. Thus, we expect the finger to form a

cusp in finite tilne. For Figure 4, two zeros approach ]([ = 1 at points corresponding

to the tops of either side of the finger, so we expect cusps to form at these positions.

Asymptotic theory suggests that the initial zeros will give rise to localized clusters

of -4/3 singularities (daughter singularities) when 0 < B << 1. The leading order

motion of each of these clusters satisfies equation (21), i.e., a cluster located at _d

moves with speed -ql(C,d(t),t). If such a cluster comes close to ]([ = 1, it can cause

the interface to deviate significantly from the B = 0 solution.

We briefly consider the influence of non-zero surface tension on interfacial shapes

by comparing the zero surface tension solution to that for small surface tension. The
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non-zeroB solution is obtained using the boundary integral method developed by Hou,

Lowengrub £: Shelley [17]. In the first case (Figure 6a), we consider initial data with

zeros of zi initially placed at infinity, and with singularities which satisfy cU <_ -4/3fl

The value of surface tension is set to B = .0025. From asymptotic theory, it is expected

that the addition of a small amount of surface tension will make little difference in the

evolution of the interface for at least O(ln B) time. The actual agreement between the

interracial shapes is quite remarkable: the two solutions are indistinguishable over tile

entire length of the run. The agreement is unaffected by using real singularities which

only satisfy aj < -1/2, since these singularities behave as though they are essentially

unaffected by capillary effects for the time of the computation.

In contrast, when the initial data of Figure 4 is used, the difference between the

B = 0 and B = .0025 shapes is very significant. As seen in Figure 6b, the B > 0

finger eventually diverges from the corresponding zero surface tension solution and

approaches a broad, steadily propagating finger. The broadening is apparently caused

by the approach of daughter singularities created from an initial zero in I(,'1 > 1 (see

Siegel, Tanveer & Dai [40]).

The above examples show that, in some cases, surface tension causes a singular

perturbation in O(1) time, whereas in other cases it does not. Our method gives

us a means of discerning these cases through computation of daughter singularity

trajectories in the extended domain [43]. We remark that our attempts to calculate

the B = 0 solutions using the boundary integral method with filtering failed before

the interface had advanced very far. This is because the close presence of strong

singularities causes fast growth of the high wavenumber modes, and numerical noise

quickly contaminates the computation. Thus, boundary integral methods often appear

unsuitable for comparing B = 0 solutions to those for B > 0 over times in which the

interface becomes significantly deformed. Dai & Shelley [8] report related problems in

B = 0 calculations, as discussed in the introduction.

We turn now to a consideration of the influence of additional -4/3 singularities

with weak amplitudes during finger formation. Figure 7a illustrates the interface

evolution resulting from initial data of the form (23) with J1 = 2, J = 3 and with

¶This is accomplished by prescribing initial data in z_ of the form z; ((, 0) = -2( l - (2/(_),,/(r().

llere we use a = -3.2 and (,, = (1.6,0.0).
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singularity strengths aj = -4/3 for j = 1,...,3. The initial singularity positions

were chosen as (i(t) -- -(_2(/) -- (1.65,0.0), and (3(t) = (-0.6, 1.83), and the initial

amplitudes as El((,',0) = E2((,0) = (-0.9,0.0), and E3((,0) = (-0.01,0.03). The

calculation uses N=512 points and a time step At = 0.0005. Two of the singularities

((1 and (_) reside on the real line, and these have large enough amplitude to produce

the wide bulges of fluid centered at y = 1 and y = -1 which define the main finger.

As the third singularity approaches the unit disk, it generates a small bulge of fluid

that gives the appearance of the formation of a dimple on the evolving finger.

The dimple is clearly stationary ill the laboratory frame, despite the overall growth

of the main finger. Such behavior has been well documented in laboratory experiments

( e.g. Park & Homsy [28], Tabeling, Zocchi, & Libchaber [41]) and in numerical

calculations (e.g. DeGregoria and Schwartz [9, 10]) with B ¢ 0. Our results show

that it is the specific nature of the trajectory of the singularity (3(t) that accounts

for this behavior. We show the trajectories of all the singularities in Figure 7b. At

first, a dimple starts to form as (3(t) approaches the unit disk. As Ca(t) begins to

move around the boundary of the unit disk towards ( = -1, the dimple continues to

grows but remains stationary in the laboratory frame. With the assumption that the

singularity is close to either ( = +1, we can show that its speed is actually the correct

speed for it to remain stationary in the laboratory frame. Details will be provided

elsewhere. The point to be made here is only that certain physical properties can

be understood in terms of the motion of singularities in the complex (,"plane. Under

the presence of surface tension, the narrow finger will eventually widen; however, the

formation of the dimple and its relationship to the motion of the singularities will not

be affected.

Placing additional singularities in the complex plane produces additional dimples

and leads to the appearance of side-branching. An example of side-branching due to

multiple pole singularities is given in Figure 8a. We use pole singularities, rather than

= -4/3 singularities, since our ability to track them arbitrarily close to the unit

disc leads to a more dramatic example of sidebranching, but in reality side-branching

is more likely to occur from the patterns of -4/3 singularities created by the inilial

transformation of zeros in z_. Initial data corresponding to (27) with Jl = 2 and J = 14

is used to generate the profiles. The starting amplitudes EJ((,0) and singularity
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positions(j(0) aregivenin TableI. The twomainsingularities(i and (2 produce the

finger centered in the channel, and remaining singularities (j for j = 3, ..., d of smaller

amplitude are located to cause side-branches to form near the base of the finger.

Additional singularities can be placed to allow side-branching to run the length of the

finger. As expected, the dimples and the corresponding side-branches are stationary

in the laboratory frame. The motion of the singularities is shown in Figure 8b, and

clearly the singularities with smaller amplitudes are attracted to the points ( = +1.

When they get close enough to either of these points, an unperturbed finger continues

to grow while the dimples remain near its base. If additional singularities are present

that start much further away from the unit disk, they will arrive close to the unit disk

at later times, producing new dimples near the tip of the finger. The endless presence

of singularities streaming in from infinity can generate fingers with side-branching

patterns seen frequently in experiments.

In Figure 7a, the small amplitude of the singularity at (3 causes the formation

of a small dimple on the side of a welt-developed finger. In contrast, when Re E 3

is the same order as Re E ! and Re E 2, the close approach of(3 to I ( I= 1 leads

to a 'tip-splitting' event and the formation of two fingers which eventually compete.

An example is given in Figure 9a for initial data of the form (23) with dl= 2, d =

3 and oj = -4/3 for j = 1,...,3. The initial singularity positions are chosen as

(1(0) = -(2(0) = (2..5,0.0), (3(0) = (0.0,4.0) and the initial amplitudes as El((,0) =

(-1.0,0.0), E2((,0) = (-0.8,0.0), E3((,0) = (-0.3,-0.16). We use N = 512 and

At = 0.0005. As shown in Figure 9b, the singularities initially move radially towards

the unit circle. As the singularity at (3 approaches I(I = 1, a dimple forms near the

finger tip. As time advances, (3 gets closer to the interface and the dimple elongates

into a large indentation, giving the appearance of two fingers. Eventually, the motion

of the singularity is predominantly tangent to the circle, and the tangential velocity

of (3 is such that the indentation is fixed in the laboratory frame. The direction the

singularity moves around the circle determines which finger will dominate. In this case

the singularity at (3 moves towards ( = -1. Since the point ( = -1 corresponds to

tile bottom end of the interface, this motion has the effect of stretching the interface

so that the indentation separating the fingers lies closer to the bottom end. The only

way this can be done while also keeping the indentation fixed in the laboratory frame
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is for the upperfingerto growsignificantlymorethan the lowerone,as indicatedin

Figure9a. Unfortunately,the simulationcannotbenot run longenoughto produce

a clearoutcomein the fingercompetition,becauseof the presenceof the singularity

in E_ and G_ at 1/_3(t). Nevertheless, we are able to compute long enough to make

the trend in singularity motion clear.

We conclude this section with a brief examination of some scenarios which may lead

to a self-intersection of the interface. A self-intersection event is often referred to as a

topological singularity; the possible formation of this type of singularity in Hele-Shaw

flow and in other free surface flows is a topic of much current interest. A topological

singularity occurs when the conformal map z(_, t) ceases to be univalent, i. e., when

two points on the _ semi-circle map to a single point. When this happens, either the

more viscous or less viscous fluid region is divided into two disjoint sections. Bertozzi,

Brenner, Dupont, & Kadanoff [7] and Goldstein, eesci, _ Shelley [12] have investigated

possible topological singularity formation in Hele-Shaw flow with surface tension. They

consider a particular geometry, consisting of a vertical cell with a thin layer of fluid

resting on the bottom, chosen so that a variant of the lubrication approximation can

be applied. Using this approximation, they concluded that in certain cases the top

interface of the layer touches the bottom of the cell in finite time. However, their

geometry and pressure conditions are significantly different from ours and it is unclear

if their results can be extrapolated to our geometry, where there is a constant pressure

gradient far ahead of the finger.

In some situations, a loss of univalence is possible even when the singularities and

zeroes of z_(_', t) in I _ t> 1 remain a finite distance from I _ I= 1. We used our code to

search for such an event in the zero surface tension problem. Unlike commonly used

boundary integral methods which run into resolution difficulties when the interface

is about to pinch (see Baker & Shelley [3]), our numerical approach based on the

conformal mapping function will not incur difficulties as long as the pinching is not

accompanied by a singularity or zero of z_ impinging on I _ 1= 1.

Unfortunately, we were unable to find any occurance of this type of singularity

in the situation where a fluid of zero viscosity displaces a viscous fluid. Of course,

the formation of a topological singularity in this case cannot be completely ruled out

from our limited examination and further study is required. When we reversed the
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pressuregradientat infinity, however,sothat the moreviscousfluid on the right of

Figure1displacesthe fluid of negligibleviscosityon the left, topologicalsingularities

weresometimesobserved.It is wellknownfrom the Saffman& Taylor [36]analysis

that a planarinterfacein this situationis stableandthat anysmalldeformationwill

reducewith time. This canbeexpectedto be true evenfor most finite amplitude

disturbances.However,our findingsshowthat if the interfaceis highly deformed

initially, pinchingcanoccur.

Onesuchexampleis presentedin Figure10. This figureshowsinterracialprofiles

beforeand after topologicalsingularityformationfor an initial valueproblemwith

two branchpoint singularitiesinitially closeto the unit disk. We pickeddata in z(

= _ /(,_) /(lr_) where c_ = -1.9 and (_ = (1.105,0.0);of the form z(((,0) -2(1 - -2 _2 _ -

with this choice, zeros in z( are placed initially at infinity.l[ The change to liquid

pushing air reverses the direction of the characteristic velocities (given by ql),and

the singularities move outward from the unit circle. Consequently, the evolution of

the interface can be obtained without explicitly representing the singularities. We

therefore set z - (2/rr)ln( = G+ + 00 and solve (39) on the circle [(I = ei'; there is

no need to evolve the radius of this circle. In the run we set N = 128 and At = 0.001.

Our example shows that a loss of univalency can occur in zero surface tension

flows without concurrent singularities in z(, and illustrates the ability of our numer-

ical method to contend with such self intersections. The occurance of these singu-

larities appears to be quite sensitive to initial conditions, with fatter initial fingers

typically evolving to a flat sheet without pinching. The form of the solution after a

self-intersection remains an open question.

6 Discussion and Conclusions

We have described a numerical method designed to track singularities present in the

conformal map from the unit semi-circle to the physical domain of Hele-Shaw flow in a

channel. The method is restricted to those conformal maps that contain singularities

of the form (23), and their initial location (3(0) and power o3 must be given if they lie

IIThus. the presence of surface tension will not significantly affect the evolution of the interface for

the times shown.
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insidethecircleof radiusR(0). Furthermore, their amplitude E J((,, 0) and G(_', 0) must

be specified, or at least their inner and outer components must be given on I_] = R(0)

and I_1 = 1 respectively. This detailed information of the initial properties of the

conformal map correspond to high precision knowledge of the initial interface location.

Our numerical method then advances the conformal map, and hence the interface,

numerically in a stable way. In other words, round-off errors do not contaminate the

high precision specification of the interface location.

Besides the restrictions on the initial conditions, there are two other limitations on

our method. Singularities in inner analytic components of EJ((, t) and G(_, t) occur

inside the unit disk at 1/¢'j(t). As _j(t) approaches the unit disk, these singularities also

approach the boundary of the unit disk, and cause slow decay of the Fourier modes for

EJ(C,t) and G(¢', t). Consequently, we need many Fourier modes to ensure reasonable

accuracy. Also, at present the method is limited to B = 0. When B _ 0, zeros in z;

are transformed into patterns of -4/3 singularities. Some of these can move toward

the unit circle and affect the shape of the interface at later times. Nevertheless, as long

as nj _< -4/3 and none of the singularities formed out of initial zeros approach the

unit disk closely, our results will be the correct limiting behavior as B _ 0. Perhaps

more importantly, our method enables accurate B = 0 computations to be obtained

for quite a general distributions of initial singularities, so that comparisons with B > 0

solutions can be made. These kind of comparisons complement the asymptotic theory,

and facilitate an understanding of the influence of small capillary effects.

Despite the limitations, we find singularities induce interfacial structure that is

typical of experiment observations when B is very small. In particular, two singulari-

ties, placed on the real axis on either side of the unit circle, induce formation of a long

finger. Singularities off the real axis induce small indentations on this finger if their

amplitudes are small, giving the appearance of side-branches, or large indentations if

their amplitudes are comparable to the ones on the real axis, giving the appearance

of tip-splitting and finger competition. In general, we expect that a continual inward

stream of singularities of all amplitudes can account for multiple branching and com-

petition as observed experimentally. Although some aspects of interracial evolution

due to multiple singularities have been examined previously by Howison [19] using a
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classof exactsolutionsfor simplepolesingularities,our algorithmallowsa broader

stud,,'to beundertakenfor collectionsof isolatedsingularitiesof moregeneralform.

Weplanto continuestudiesof thepropertiesof the singularitiesandthe interfa-

cial structuretheir induce. For example,wewish to explorewhat role the complex

amplitudeshaveon the trajectoriesof the singularities.Wehopeto find waysto rep-

resentthe singularitiesin better formsthat mayremovesomeof the limitations in our

method,and wehopeto find waysto capturethe transformationof zeroswhenB is

very small, but non-zero. The authors would like to acknowledge support from NASA

grant NAG 3-1415 (G.B.), Department of Energy contract DE-FG02-92ER14270 (M.

S. and S. T.), and an NSF Postdoctoral Fellowship (M. S.). S. T. was partially sup-

ported by NASA grant NAS1-18605 while in residence at The Institute for Computer

Applications in Science and Engineering (ICASE).
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1. Tile unit semi-circle in tile ( plane is mapped into tile viscous fluid region of tile

channel, with the circular arc being mapped to the interface. The points A,B,

and C in tile ¢" plane are mapped to tile corresponding points in tile channel.
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7. a) An advancing finger with a side perturbation. 'File plots ra.nge I'r¢_m I = 0 to

t = 0.22 in increments of .02.
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9. a) An illustration of tip splitting followed by finger formation and competition,

due to a = -4/3 branch point singularities. The plots range from from t = 0 to

t = 0.6 in increments of .2, and from t = 0.6 to t = 0.7 in increments of .02.
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